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Abstract - The performance of cloud application is often quite 
disappointing due to unmanaged consolidation. Therefore, efforts 
are required to reduce co-tenants interference and provide 
predictable application performance in multi-tenant cloud 
environments. In this paper, we examined the complex interplay 
among cloud tenants as they compete for CPU time, and shared 
hardware resources. We propose Adaptive CPU Sharing (ACS) 
approach that reduces co-tenants interference and provides 
predictable application performance. Our approach is to monitor 
the progress of submitted applications at runtime, tracks the 
slowdown of individual application and applies adjustment until 
convergence. Thus, when an application suffered more slowdown, 
we allocate more CPU to reduce unfairness. In establishing system 
support for fine-grained profiling, we report system level activities 
at sub-second granularity. We predicted application performance 
degradation by creating a mathematical relationship between high-
level application performance and low-level machine events (i.e., 
CPU steal time and L2 caches miss rate). We validate the added 
value of our approach by comparing application performance 
slowdowns (average) with various datasets. Based on our 
experimental results, our approach helps mitigate co-tenant 
interference and reduces unfairness by minimizing the overall 
application slowdowns. 

Index Terms – Multi-tenants Cloud Computing, Co-tenant 
Interference, Performance Measurement, Performance 
Variation, CPU Steal Time, Performance Degradation 

I. INTRODUCTION 

This paper is an extension of our previous work [1] with the main 
contribution that involve the implementation of mitigation 
techniques to reduce the impact of co-tenants’ interference and 
improve application performance. Application performance 
degradation due to resource sharing and contention among co-
tenants is well study in literature. However, most of the existing 
work focuses on a particular aspect of the resource sharing in 
isolation. There lacks a comprehensive understanding of the 
complex interplay between individual hardware components under 
resource contention. In this research work, we focused on 
predicting application performance by establishing a mathematical 
relationship between the high-level application performance and 
the low-level CPU multiplexing from resource sharing perspective. 
We measure application performance in term its execution runtime 
“mean” (average) in an interference free environment as a baseline. 
We define application performance degradation as unexpected 
slowdowns incurred by an application due to contention and co-
tenant interference. Thus, we define multi-tenant cloud 
environments to be fair if all running applications experience equal 
slowdowns. This assumption is based on application performance 
in term of its execution runtime rather than on resource related 
metrics. Prior work [2, 3,4] supports this assumption. Therefore, we 
can say unfairness occurs in multi-tenant cloud environments when 
application of equal weight experience disparity slowdowns. The 

over-arching goal of this work is to reduce overall application 
performance degradation by considering CPU allocation and 
contentions on shared resources. We propose a novel approach that 
helps mitigate co-tenant interference, reduce unfairness in the 
allocation of shared resource and enhance application performance 
in a multi-tenant cloud environment. To this end, our overall 
approach is to: 
• Quantify the impacts of CPU time multiplexing and hardware 

resource sharing on application performance and applies 
adaptive resource control (i.e., CPU allocation) to achieve 
equitable services among cloud users.  

• Measure application performance in term of unfairness by 
using the relative execution runtime slowdown compared to the 
runtime in an interference-free environment.  

• Design an Adaptive CPU sharing approach that helps mitigate 
co-tenant interference, and reduce unfairness in the allocation 
of shared resource in multi-tenant cloud environments. The 
goal is to minimize the “average” slowdown of co-located 
applications runtime.  

The basic approach is to monitor the progress of submitted 
applications at runtime, tracks the slowdown of individual 
application and applies adjustments until convergence. 

First, we define multi-tenant cloud environments to be fair if all 
running applications experienced equal slowdowns. We denote by;  

• (i), application  
• (t_alone_i), as runtime when (i) runs alone
• (t_share_i), as runtime when (i) runs concurrently with 

other application in multi-tenant environments  
Thus, the slowdown of an application (i) is calculated as: 
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We measure unfairness to application (i) among other application 
(n) as the ratio between its peak (maximum) and lowest (minimum) 
slowdown.   
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The ultimate goal of our approach is to minimize the unfairness and 
ensure that applications with different runtime experience 
consistent slowdowns. 

II. BACKGROUND AND MOTIVATION 

In a multi-tenant cloud environment; there are significant 
contributing factors that impact overall application performance and 
throughput. Thus, we discuss below three prevailing challenges 
facing the Multi-tenants’ clouds environment that continues to 
impact negatively users experience and adoption of the cloud.  
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Attempt to understand these challenges and the need to address 
them motivates the basis for our research work.��

A. Multi-tenant CPU Sharing 
As a standard practice by cloud providers, a multi-tenant public 
cloud platform such as Amazon Elastic Compute Cloud EC2 [5] 
instance (virtual machine [VM]) share resources with other 
instances on a single host in a virtualized environment. 
Predominantly shared resource is the CPU cycles; however, 
unmanaged sharing of CPU usage has significant consequences on 
tenants’ performance and throughput. The sharing of CPU time 
causes undue CPU steal time [6]. 

B. Contention for Shared Hardware Resource  
Mekkat et al. [7] mentioned that one of the key challenges in 
designing heterogeneous multicore systems is the sharing of on-
chip resources such as the last-level cache (LLC), which may have 
significant impact on system and application performance. 
Zhuravlev et al. [8] stated that the challenges of shared resource 
contention existed because chip multicore processor cores are not 
independent processors but rather share common resources among 
cores such as the last level cache (LLC). 

C. Lack of Fairness in Resource Management  
Cloud application performance largely depends on proper utilization 
of multiple reconfigurable shared resources such as the CPU, 
memory, and disk I/O bandwidth. It is imperative to ensure that any 
reconfiguration, allocation, and utilization of shared resources are 
fair to all tenants in such a way that mitigate undue interference and 
reduce performance degradation. 

III. RELATED WORK 
In this section, we review existing research work and discuss how 
this research work complements existing work. First, in our prior 
research work [1], we profiled and analyzed the impact of co-tenants 
interference and established the root causes of application 
performance variation in multi-tenant cloud environment. Xu et al. 
[4] in their research propose a fair-progress process scheduling 
(FPS) policy to improve system fairness. Their strategy is to force 
equally weighted applications to have the same amount of slowdown 
when they run concurrently by allocating more CPU time. In this 
paper, we leverage similar approach by allocating more CPU based 
on the high-level application performance and low-level contention 
for shared resources. Menon et al. [9] in their work presented 
Xenoprof, a system-wide statistical profiling toolkit implemented 
for the Xen virtual machine environment with focused on 
performance overheads for network I/O device. Blagodurov et al. 
[10] investigated thread scheduling can help mitigate contention for 
shared resource.  Nathuji et al. [11] presented Q-Clouds, a QoS-
aware control framework that tunes resource allocations to mitigate 
performance interference effects by using online feedback to build a 
multi-input multi-output (MIMO) model that captures performance 
interference interactions and uses it to perform closed loop resource 
management. Also, the concept of proportional share–based 
algorithm was proposed [12, 13, 14], which allocates CPU 
resources based on resource specifications in other to help mitigate 
interference among co-tenants and reduce performance degradation. 

IV. DESIGN

In this section, we provide the design of our fine-grained 
measurement framework, experimental platform setup, experiment 
test cases, and implementation approach. Our implementation 
approach includes configuration of testbed platform, software 

installation, and codes design. The support system design includes 
in-hypervisor reporting of CPU allocation and cache misses. First, 
a multi-tenant private cloud platform is configured with a quad-
core processor (Xen environment) with two guests VM; (VM-
INTR) and VM-SPEC).  (VM-SPEC), and (VM-INTR) are assigned 
CPU weight with the ratio of 1:1. The guest OS and Xen are both 
instrumented to report CPU steal time and hardware performance 
statistics of a VM in real time. We design two system level fine-
grained profilers; CPU steal time profiler, and Hardware 
performance counters profiler to record and measure the interplay 
as tenants compete for CPU time and shared hardware resources. 
Measurements from the two profiler help derive meaningful models 
to predict the performance of various applications in the cloud. 
Finally, a system level Adaptive CPU Sharing (ACS) algorithm 
was design and implemented. ACS monitors the runtime statistics 
of co-running applications and predicts the overall slowdown of 
each application. If unfairness exists, ACS throttles the application 
that has lower slowdown than the other by setting a lower CPU cap.  
Table 1 and Figure 1 show our experimental system setup and 
reference architecture. 

TABLE 1. OVERVIEW OF SYSTEM SETUP 
Component 
name 

Xen 4.0.2 
(domain- 0) 

VM-SPEC 
(tenant #1)  

VM-INTR 
(tenant #2)

System 
information    

CentOS 5.3 
Linux, Intel(R) 
Core (TM) Quad 
CPU Q9550 
2.83GHZ 

CentOS 5.3 
Linux, 
Intel(R) Core 
(TM) Quad 
CPU Q9550 
2.83GHZ 

CentOS 5.3 
Linux, Intel(R) 
Core (TM) 
Quad CPU 
Q9550 
2.83GHZ 

Memory  3.48GB 2.8GB 2.8GB 

Hard disk size  103GB  50GB 50GB 

CPU Core 4 4 vCPU 4 vCPU 
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Figure 1. Multi-tenant Clouds Reference System Architecture 

A. Experiment Test Cases  
We conducted our research with three (3) experimental test cases: 
• Test Case 1(Dataset 1): experiment in an interference free 

environment with standard resource management.  
• Test Case 2 (Dataset 2): experiment in a co-located 

interference prone environment with standard resource 
management. 

• Test Case 3 (Dataset 3): experiment in a co-located 
interference prone environment with controlled resource 
management.  

Our experiments benchmark SPEC CPU2006 simulate certain 
aspects of real-world application workloads and comprises of both 
CPU and memory bound benchmarks. Table 2 shows the Datasets 
for Test Case 1, Test Case 2, and Test Case 3 respectively. 

TABLE 2: EXPERIMENTAL TEST CASES 1-3 
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TEST CASE  1 TEST CASE  2 TEST CASE 3 

VM-SPEC VM-
INTR 
(w/milc) 

VM-SPEC VM-
INTR 
(w/milc) 

VM-SPEC VM-
INTR 
(w/milc) 

Mcf No Load Mcf Milc Mcf Milc 

Milc No Load Milc Milc Milc Milc 

Gobmk No Load Gobmk Milc Gobmk Milc 

Bzip No Load Bzip Milc Bzip Milc 

Soplex No Load Soplex Milc Soplex Milc 

Libquantum No Load Libquantum Milc Libquantum Milc 

B. Fine-grained CPU Steal Time Profiler
To measure the CPU steal time, the profiler makes periodic system 
call via the Xen hypervisor to get the system runstate with 
HYPERVISOR_vcpu_op (VCPUOP_get_runstate_info) operation. 
VCPUOP_get_runstate_info triggers an hypercall [15] which 
allows the guest OS to perform privileged operation through Xen 
hypervisor, similar to the use of system calls in a conventional 
operating system. The VCPUOP_get_runstate_info was 
implemented on each guest OS to report the vCPU steal time for 
given period. The profiler takes two arguments; profiling duration 
(length of the sampling period) and the vCPU identification. We 
define vCPU runnable time as the time the vCPU is willing to run 
but do not have the chance to run because other VMs are using its 
time. Also, we define vCPU offline time as the capped time for the 
vCPU i.e. there is a static cap on the CPU allocation. We denote 
by;  

• (o), vCPU offline time  
• (r), vCPU runnable time  
• (./), CPU steal time  

Thus, CPU steal time (./) for a given vCPU (y) is calculated as;  
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Algorithm 1 below supports the CPU steal profiler and helps in the 
measurement of the CPU steal time. The profiler achieves fine 
grained profiling at the milliseconds level. 
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C. Fine-grained Hardware Performance Counters Profiler  
Hardware performance counters statistics are reliable metrics for 
program characterization, system testing, and performance 
evaluation [16]. On modern CPU architectures, multiple cores share 
last-level cache (LLC), where LLC is the last cache available; 
beyond this cache, the access must go to memory. Therefore, cache 
activities are important metric to understand the memory usage of a 
VM in multi-tenant environment.  To profile contention for shared 
hardware resource, we patched the Xen hypervisor with Perfctr-Xen 
[17] to allow measurement of low-level hardware performance 
counters Perfctr [18]. Our experimental system set-up is a Type-1 
virtual machines [20] environment, whereby, the Xen hypervisor 
serves as the lowest layer with direct access to the supporting 
hardware infrastructure and the guest VMs run on top of the Xen 
hypervisor. The profiler captures L2 cache activities and help to 
measure the interplay between application performance and 
processor events. It’s important to note that the Xen Quad-core 
processors used in this research work has two Level 2 (L2) caches, 
each shared by two processor cores [21, 22].  Also, the Xen Quad 
core support two hardware counters, and can report different events. 
The profiler was configured to count and report two predefined 
hardware performance statistics; L2_rqsts.self.demand.mesi [23], 
and L2_rqsts.self.demand.i_state [23]. Each core has a L2 cache of 
same size; the L2 cache miss rate is independent of the thread-to-
core assignment [24]. Exiting research supports the use of metrics 
from last level cache miss rate as an effective data for quantifying 
shared hardware resource contention [9].  To establish the L2 cache 
miss_rate, we counted L2_rqsts.self.demand.i_state (all completed 
L2 cache demand requests from the core that miss the L2 cache) and 
L2_rqsts.self.demand.mesi (all completed L2 cache demand 
requests from the core) per thousand instructions. We denote by;
• (W), L2 cache miss ratio (cache miss_rate) 
• (6), L2 cache demand request missed  
• (67), L2 cache demand request  
Thus, we calculate the L2 cache miss_ratio as;  

8 � 9
9:                                                 �;�

Algorithm for the fine-grained hardware performance counter helps 
in the measurement of L2 cache miss_rate. Algorithm is suppress 
for this paper.  

D. Design of Adaptive CPU sharing model 
As a background, a CPU scheduler determines which VM should 
run on the CPU at any given time.  In general, majority of CPU 
schedulers are broadly categorized as either a proportional share 
(PS) or fair-share (FS) [24]. FS schedulers provide proportional-
share among multi-tenant clients by adjusting the priorities of clients 
in the most suitable way.  Experimental measurements had showed 
that most FS schedulers provide a reasonable, proportional fairness 
over relatively large time intervals [25]. On the other hand, PS 
techniques focus on allocating CPU in proportion to the VM shares 
(weights).  The difference between FS and PS can be discuss in term 
of the time granularity at which both schedulers operate. PS aim to 
provide an instantaneous form of CPU sharing among the active VM 
clients according to their weights. In contrast, FS provides a time-
averaged form of proportional sharing based on the actual VM use 
of CPU measured over long time periods [24].  With the traditional 
Xen credit scheduler [26], each tenant (VM) is assigned a weight 
and a cap. If the CPU cap is Zero (0), then the guest can receive any
extra CPU time. A non-zero cap CPU allocation normally expressed 
as a percentage limits the amount of CPU a tenant can receive.  
Therefore, as a standard, the Xen credit scheduler uses 30 ms time 
slices for CPU allocation and a guest (vCPU) receives 30 ms before 
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being preempted to run another guest [27]. After every 30 ms, the 
priorities (credits) of all runnable guests are recalculated. However, 
with the dynamics state of the cloud environments, the priorities 
credit rule of Xen scheduler may lead to fluctuation in the allocation 
of CPU and thereby making CPU allocation inequitable to all users. 
CPU time-sharing among multiple VMs has been showed to provide 
much more predictable performance than I/O sharing [28]. Our 
approach considered both the PS and FS schedulers techniques in its 
design.  Our design approach extends the Xen credit scheduler [29] 
to support more efficient, fair, and dynamic scaling of CPU sharing 
among co-tenants. Specifically, the ACS algorithm checks the status 
of individual applications based on runtime characteristics of the 
workloads to enforce fairness in the allocation of CPU. The ACS 
algorithm encrust on the (Xen)’s hypervisor by building on the xm 
shed-credit -c [30] to control the CPU resource allocation to each 
guest so that each guest receives relatively same level of slowdown. 
Thus, in designing the ACS algorithm, we modified the Xen 
management utility through the Linux kernel to allow for adaptive 
changing of the CPU allocation so that each VM receive relatively 
same level of slowdown based on the high-level application 
characteristics rather than arbitrary capping the CPU value for each 
tenants. Therefore, our algorithms adaptively change the CPU cap 
values of each VM to achieve fair slowdowns to all tenants. We 
design the ACS to have a controlled resource sharing rules i.e. the 
controlled factor��<��of the application behavior, and the application 
performance effect
�=&��� Therefore�� �<�
���
�=&�� together 
determine the magnitude of the resource sharing adjustment. The 
change of� �<��has impact on the application overall performance. 
One of the most commonly used statistical procedures to model 
relationships between variables is regression analysis [32].�
Regression analysis relates a dependent variable� �<�� with 
explanatory variables��=)(�=>(=?( =@( * A =&���used as predictors. A 
simple form of regression analysis is linear regression; in which we 
assume the dependent variable is a linear function of explanatory 
variables. Thus, we define��<��and��<B��as; 

< ��C'�C)��
=) 3 C>��
=> 3 C?�3D
3
C&�
=&���������������E��<B���C'�C)��
=) 3 C>��
=> 3 C?�3D
3 
C&�
=&��������������F��
The goal of linear regression analysis is to find coefficients��C'( C)��
C>(* ( C&�(
to minimize error� 	< G <B	��Where� �C�� is a discount 
factor that give more weight on the recent observation of��<��
���
�<B�(� with due consideration on the application workloads past 
behavior. We have assumed the application workloads past 
behaviors are predetermined by the application benchmark 
workloads runtime in an interference free environment.  Also, if a 
repeated application behavior does not deviate from the establish 
application workloads runtime, the application performance� �=&��
would converge. If the application behavior deviates from reference 
performance interference free baseline value, the value��C��should 
quickly recalibrates. To reduce unfairness, it’s imperative that we 
have a capability that allows for dynamic adjustment to the 
scheduler, and we need to understand the application characteristics. 
ACS uses the controller to manage the CPU cap for each VM so that 
unfairness is minimized. Assume that each VM has slowdown_i
and the average slowdown is slowdown_avg. Thus, the cap of VM
�H��at time �I��is calculated as: 

JCK�I��H � JCK�I G ���H G = L �MN4OP4OQ�CRS G MN4OP4OQ�H)�T�
Where (=� is the integral gain parameter that controls the rate of 
cap adjustment 
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As such, if a VM receive lower slowdown than the average, it gains 
advantage over others and will have its cap value decreased. In 
contrast, a VM having higher slowdown than the average will see 
its cap increased. Figure 1 depicts the ACS process flow. We 
describe a typical ACS process flow process as follows:  
a. Cloud users submit workloads;  
b. Shared resources are made available to process submitted 

workloads; 
c. Fine-grained profilers measure tenant interplay and 

competition for shared resource; 
d. CPU allocation to tenants is determine by the workload 

behavior and tenant state; 
� Workloads performance is manage with reasonable level of 

prediction. �

�
Figure 2: Schematic Overview of the Steps involved towards Application-

centric Fairness in Multi-Tenant Clouds 

Algorithm 2 below supports the Adaptive CPU sharing and helps 
to enforce fair CPU sharing among co-tenants. 
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V. EXPERIMENTAL RESULTS 
In this section, we are interested in analyzing the relationship 
between the low-level machine activities and high-level application 
performance. We conducted series of experiments, and as 
mentioned in section IV, we have three test cases. We started our 
experiments with the standard Xen resource allocation to establish 
application performance baseline based on the workloads execution 
runtime (average). Thus, we analyze results from our experiments 
datasets. CPU Steal Time and Application Performance    
Table 5, 6, and 7 shows the benchmark workloads runtime and fine-
grained CPU Steal Time (Milliseconds) metrics from experimental 
Test Cases 1-3.   

TABLE 5: TEST CASE 1 - BENCHMARK WORKLOADS RUNTIME 
(AVERAGE) AND CPU STEAL METRICS 

Benchmarks workload 
slowdown (average) 
runtime (VM-
SPEC)  

Ave. Steal 
time (VM-
SPEC) 

Ave. Steal 
time (VM-
INTR) 

Mcf 8.61 2 0 

Milc 11.8 2 0 

Gobmk 10.46666667 2 0 

Bzip2 10.23333333 2 0 

Soplex 7.766666667 2 0 

Libquantum 16.08333333 2 0 

TABLE 6: TEST CASE 2 - BENCHMARK WORKLOADS RUNTIME 
SLOWDOWN (AVERAGE) AND CPU STEAL METRICS 

Benchmarks workload 
slowdown 
(average) 
runtime 
(VM-SPEC) 

Ave. Steal 
time 
(VM-
SPEC) 

workload 
slowdown 
(average) 
runtime 
(w/milc) 
(VM-INTR) 

Ave.Steal 
time 
(VM-
INTR) 

Mcf 1.116918312 34 2.159604517 4980 

Milc 1.213276836 40 2.357344636 5011 

Gobmk 1.025477706 40 2.000000000 5010 

Bzip2 1.01791531 58 1.991525424 5040 

Soplex 1.62446352 40 1.411016949 3920 

Libquantum 1.187564767 34 2.419491525 4920 

TABLE 7: TEST CASE 3 - BENCHMARK WORKLOADS RUNTIME 
SLOWDOWN (AVERAGE) AND CPU STEAL METRICS 

Benchmarks workload 
slowdown 
(average) 
runtime 
(VM-SPEC) 

Ave.Steal 
time (VM-
SPEC) 

workload 
slowdown 
(average) 
runtime 
(w/milc) 
(VM-INTR) 

Ave.Steal 
time (VM-
INTR) 

Mcf 1.873790166 64 1.629943503 180 

Milc 1.508474576 253 1.45480226 339 

Gobmk 1.162420382 177 1.059322034 243 

Bzip2 1.858306195 18 1.706214689 77 

Soplex 1.46137339 272 1.209039548 283 

Libquantum 2.18016529 192 1.378531074 264 

To characterize the relationship between the benchmark workload 
slowdown (t) and the CPU steal time(x), we calculate the linear 
correlation coefficient (r) between the benchmark workload 
slowdown (t) and CPU steal time (x). We denote by;  

• �W�; CPU steal time 
• (I); benchmark workloads slowdown 

1 � 
&X /YZ�X/
�

�XY�
[
&�
XY\�Z�
XY�\
]
&�
X/\�Z�
X/�\
































(9)       

Using (9), and metrics from Table 6, Test Case 2, we, establish that 
the benchmark slowdown (I) is proportional to the CPU steal time 
(x) with  r = 0.8361.  Linear correlation coefficient (r) is closer to 1, 
this indicate a strong positive relationship between (I) and (W).  This 
finding validates the relationship between CPU steal and its impact 
on benchmark workloads runtime in term of application 
performance.   
Figure 3 shows the fine-grained CPU steal time for Test Case 1, Test 
Case 2, and Test Case 3.  

�
Figure 3: SPEC CPU2006 benchmark workloads showing CPU Steal 

Time in different consolidation scenarios. 

In figure 3, Test Case 1 depicts zero CPU steal time due to lack of 
co-tenant interference. In Test Case 2, Tenant #2 experienced unfair 
high CPU steal due to co-tenant interference.  In Test Case 3, Tenant 
#1 and #2 experience shared CPU steal time. This finding 
underscore the underlying indicator for unfairness in application 
slowdowns; thereby, leading to unpredictable application 
performance in multi-tenant cloud environment. 

A. Memory Access and Benchmark Workload Performance  
To further support predictable application performance in multi-
tenant cloud, we analyze the relationship between high-level 
application performance and low-level memory access.  Studies 
have shown that effective memory access among co-tenants is very 
important in multi-tenant clouds. Therefore; the memory miss rate 
become more significant.  
Table 8, and Figure 4 shows the consolidated L2 cache miss_rate
metrics from L2 cache demand request miss, and L2 cache demand 
request events captured during our experiments for each dataset 
captured as we submit the benchmark workloads for processing. 

TABLE 8: L2 CACHE MISS RATE METRICS FROM TEST CASES 1-3 
Benchmarks Test Case 1 Test Case 2  Test Case 3 

Mcf 0.05747975 0.1169545 0.079881 

Milc 0.17263025 0.19241325 0.14037925 

Gobmk 0.028304 0.0831910 0.0973515 

Bzip 0.025819 0.03417075 0.04921675 

Soplex 0.08920625 0.10622325 0.1461455 

Libquantum 0.05807225 0.0733105 0.075655 
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�
Figure 4: L2 Cache Miss_Rate with Combine Test cases 

Further, in Figure 5, 6, and 7, we show the outcome of low level 
memory access events (L2 cache miss rate) for the quad-core 
processor with various experiments test cases. 

�
Figure 5: Test Case 1 - Quad-Core Processor Activities  

Figure 5, shows moderate spike in L2 cache miss rate due to lack of 
interference and co-tenant competition.  

�
Figure 6: Test Case 2 - Quad-Core Processor Activities  

Figure 6, shows significant spike in the L2 cache miss rate because 
of high level of contention for memory access between the two 
tenants.  

�
Figure 7: Test Case 3 - Quad-Core Processor Activities  

Figure 7, shows significant spike in the L2 cache miss rate because 
of high level of contention for memory access between the two 
tenants. These findings validate the relationship between effective 
memory access and application performance.  Therefore, we can 
conclude that memory as a shared resource contributes to 
application performance variation in multi-tenant cloud 
environment. Thus, memory tuning is a viable approach that can be 
use to promote application-centric fairness in multi-tenant clouds. 

VI. EVALUATION OF EXPERIMENTAL RESULTS

In this section, we analyze and evaluate our experimental results and 
findings. Next, to prove this research hypothesis, we are interested 
in further analysis of results and metrics from our experiments. 
Therefore, to further test the hypothesis of our approach, we 
reviewed several performance prediction techniques; Weighted 
Means [31, Linear Models (LM) [32], and Support Vector Machines 
[33]. Using the weighted means technique, we focus our 
measurement on the application performance “mean” average. 
Therefore, we define the application execution runtime (average) as 
the primary measure of the application performance of individual 
application. The average “mean” method help to measure 
application performance scores relatively across Test Cases 1-3. 
Therefore, to quantitatively express the application performance 
runtime slowdown “mean” average, we analyze results from our 
experiments Test Cases. 
We denote by;  
• (P), overall application performance 
• �I�, the application workloads runtime 
• (n), instances of each submitted application workloads 

If we have the application workloads runtime containing the value��
I)( I>( I?( I@( A A A ( I&(
�the arithmetic mean�^�is define as;��
�

^ � _X`abc YbA
& 
d����������������������������(11)

Thus, we calculate the overall application�performance� &̂�(�“mean”�
(average) as;�

�



 &̂ � _X`abc �YbeY\eYfeYgeA*Yc�
& 
d���������������������

To evaluate the performance of our algorithm, we analyze results 
from the various Test Cases submitted. We measure benchmark 
workload slowdown as a disunion between the application runtime 
with interference (t_share_i) and application runtime without 
interference (t_alone_i). 

First, we use experimental results from Test Case 1 (Table 9 and 
Figure 8) and Test Case 2 (Table 10 and Figure 9) respectively.  For 
instance, In Table 9, the milc benchmark workload (average) 
normalized runtime baseline in an interference free environment is 
11.8minutes (VM-SPEC). Figure 8 shows milc benchmark 
workload baseline runtime. 

TABLE 9: TEST CASE 1 - BENCHMARK APPLICATION WORKLOADS 
RUNTIME SLOWDOWN (AVERAGE) METRICS 

Benchmarks Ave. workload runtime (VM-SPEC) interference free 

Mcf 8.61 

Milc 11.8 

Gobmk 10.46666667 

Bzip2 10.23333333 

Soplex 7.766666667 

Libquantum 16.08333333 
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�
Figure 8: Test Case 1 - Benchmark Workloads Runtime (Average) in an 

Interference Free Environment with Standard Resource Management 

In Table 10, the milc benchmark workload runtime slowdown 
(average) in a co-located environment with standard resource 
sharing is calculated as 1.21minutes (VM-SPEC) and 2.35 minutes
(VM-INTR). 

TABLE 10: TEST CASE 2 - BENCHMARK APPLICATION WORKLOADS 
RUNTIME SLOWDOWN (AVERAGE) WITH STANDARD RESOURCE 

Benchmarks workload slowdown 
(average) runtime (VM-
SPEC)

workload slowdown 
(average) runtime 
(w/milc) (VM-INTR)

Mcf 1.116918312 2.159604517 

Milc 1.213276836 2.357344636 

Gobmk 1.025477706 2.000000000 

Bzip2 1.01791531 1.991525424 

Soplex 1.62446352 1.411016949 

Libquantum 1.187564767 2.419491525 

�
Figure 9: Test Case 2 - Benchmark Workloads Runtime Slowdown 

(Average) in a Co-Located Interference Prone Environment with Standard 
Resource Management 

In figure 9, benchmark workloads submitted in VM-INTR (Tenant 
#2) shows significant slowdowns compare to workloads submitted 
in VM-SPEC (Tenant #1) even with workloads of similar 
characteristics e.g. milc.  
Further, we expand equation (12) to demonstrate the value add of 
ACS and its impact on the overall application benchmark workload 
performance. We measure the benchmark workloads runtime 
slowdown (average) when the benchmark workloads execute in 
standard resource sharing mode, and when the benchmark 
workloads execute in ACS mode. Thus, we denote by; 
• � ĥ��� application workloads runtime slowdown (average)

with standard resource sharing as;��
�� î���
_X`ab

c Y�jbkj\kjfkjgkjlkjm**jc�
& d������������������(13)�

• �nop��� application workloads runtime slowdown (average) 
with ACS sharing as;�


�^oq� � _X`ab
c Y�rbkr\krfkrgkrlkrm**rc�

& d����������������� (14)�

Therefore, we use metrics from Table 10 (Test Case 2) and Table 11 
(Test Case 3) to support our experimental evaluation.   

TABLE 11: TEST CASE 3 - BENCHMARK APPLICATION WORKLOADS 
RUNTIME SLOWDOWN (AVERAGE) WITH ADAPTIVE CPU SHARING�

Benchmarks workload slowdown 
(average) runtime 
(VM-SPEC) 

workload slowdown 
(average) runtime 
(w/milc) (VM-INTR) 

Mcf 1.873790166 1.629943503 

Milc 1.508474576 1.45480226 

Gobmk 1.162420382 1.059322034 

Bzip2 1.858306195 1.706214689 

Soplex 1.46137339 1.209039548 

Libquantum 2.18016529 1.378531074 

�
Figure 10: Test Case 3 - Benchmark Workloads Runtime Slowdown 

(Average) a Co-Located Interference Prone Environment with Controlled 
Resource Management 

In Table 11 and figure 10, the benchmark workloads runtime 
slowdown shows reduction in unfairness slowdown between the 
background and foreground application workloads runtime. On the 
hand, in Table 10 and figure 9 the application workloads runtime 
shows unequitable slowdown between the background and 
foreground application workloads runtime.  
Figure 9 and figure 10 shows the contrast between benchmark 
workloads runtime slowdown (average) in standard resource sharing 
mode and Adaptive CPU sharing mode. Figure 10 depicts that the 
ACS approach reduce unfairness and among co-tenants.  
Additionally, we are interested in ensuring that the individual 
application runtime slowdowns with our approach is compared to, if 
not better than the individual application runtime slowdown with the 
standard Xen resource scheduler.  
We are more interested in finding out the extent to which the overall 
application performance is affected in term of performance 
degradation based on the application runtime average. 
Subsequently, we can quantitatively compare the application 
performance in term of the workloads slowdown when running with 
standard Xen CPU sharing and Adaptive CPU sharing using metrics 
from our experiments.  
To this end, two separate milc experimental metrics from Test Case 
2 and Test Case 3 were evaluated to establish the impact of the 
Adaptive CPU sharing on application performance in multi-tenant 
cloud environment.  
• Milc benchmark workloads runtime slowdown (average) with 

standard resource sharing (Test Case 2).  
• MILC benchmark workloads runtime slowdown (average) with 

adaptive CPU sharing model (Test Case 3). 
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We compare the slowdown runtime (average) of Milc benchmark 
workloads when running in standard resource sharing
� ĥ��� and 
Milc benchmark slowdown runtime (average) when running in 
Adaptive CPU sharing
�^oq����
Table 12 and 13, shows the consolidated runtime slowdown 
(average) for milc benchmark workloads with standard resource 
sharing and milc benchmark workloads runtime slowdown 
(average) with Adaptive CPU sharing respectively. 

TABLE 12: TEST CASE 2 - MILC BENCHMARK WORKLOADS RUNTIME 
SLOWDOWN (AVERAGE) WITH STANDARD RESOURCE SHARING 

Runtime instance (n) workload slowdown (average) runtime (w/milc) 
(VM-INTR) 

T(K1) 2.159604517 

T(K2) 2.357344636 

T(K3) 2.000000000 

T(K4) 1.991525424 

T(K5) 1.411016949 

T(K6) 2.419491525 

TABLE 13: TEST CASE 3 - MILC BENCHMARK WORKLOADS RUNTIME 
SLOWDOWN (AVERAGE) WITH ADAPTIVE CPU SHARING 

Runtime instance(n) workload slowdown (average) runtime (w/milc) 
(VM-INTR) 

T(Z1) 1.629943503 

T(Z2) 1.45480226 

T(Z3) 1.059322034 

T(Z4) 1.706214689 

T(Z4) 1.209039548 

T(Z6) 1.378531074 

Using equation 13, 14, and metrics from Table 12 and Table 13, we 
compare the overall application runtime slowdown (average) ( &̂),
between milc benchmark workloads runtime slowdown 
(average)
� ĥ� – (standard resource sharing), and milc benchmark 
workloads runtime slowdown (average) �^oq� – (Adaptive CPU 
sharing);  
Thus, we calculate; 
• �ns� �
 milc benchmark workloads runtime slowdown 

(average) with standard resource sharing = 2.05649(minutes)  
• �not� �
 milc benchmark workloads runtime slowdown 

(average) with ACS = 1.40630(minutes)

Figure 11: Milc Benchmark Workloads Runtime Slowdown (Average) 
with Standard Resource Sharing, and Adaptive CPU Sharing 

Figure 11, shows the overall application performance difference 
( &̂� between milc benchmark workloads runtime slowdown 
(average)�� ĥ�(�and milc benchmark workloads runtime slowdown 
(average)�^oq����
Based on the milc benchmark workloads average runtime, our 
approach improves the overall milc benchmark workloads runtime 
(average) slowdown by 37.54% compared to milc benchmark 
workloads runtime (average) slowdown with Xen standard resource 
controller.  

VII. CONCLUSION AND FUTURE WORK 

This paper addresses the issue of unpredictable application 
performance in multi-tenant. Our approach in addressing 
unpredictable application performance due to resource contention 
among co-tenants is unique in that we have use fine-grained low-
level system metrics information to inform CPU allocation to each 
tenant and reduce unfairness in application performance 
degradation. Through series of experiments, we identified various 
application performance characteristics, and we reduce the 
imbalances in resource allocation and improve application 
performance slowdown (average) without intrusive modification of 
the hypervisor. We consider both the contention on CPU time as 
well as contentions on the shared hardware resources (memory) to 
accomplish efficient prediction of application performance.  

Our approach adaptively allocates CPU to ensure equal 
slowdown runtime for all co-running applications. Therefore, 
dynamic allocation of CPU as a shared resource is a viable solution 
to mitigate interference and reduce unfairness among cloud tenants 
in multi-tenant cloud environments. Further, we demonstrate that 
contention on shared resources, such as last-level CPU caches, has 
salient impact on application performance. To monitor hardware-
level statistics in a fine-grained manner and ultimately realize online 
performance prediction, we developed a set of tools to record 
hardware events, and obtain important CPU allocation at the 
hypervisor level, and throttle CPU allocation to reduce co-located 
applications performance degradation.  The over-arching goal of this 
work is achieve by reducing the overall application performance 
degradation in an equitable manner among cloud tenants. 
Additionally, based on our experimental results, ACS incurs lower 
unfairness that the default Xen scheduler.  

Therefore, we propose ACS as a novel approach that helps 
mitigate co-tenant interference, reduces unfairness by minimizing 
the application slowdowns, and improves in-cloud application 
overall performance. Experimental tests were performed on a 
private multi-tenant cloud environment with micro-benchmark 
workloads that simulate certain aspects of real-world application 
workloads; however, results may vary with actual workloads carried 
out on different environment. 
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