
Towards Application-centric Fairness in Multi-Tenant
Clouds with Adaptive CPU Sharing Model�

Anthony O. Ayodele, Jia Rao, Terrance E. Boult,
Department of Computer Science

University of Colorado, Colorado Springs, USA
{aayodele, jrao, tboult} @uccs.edu

Abstract - The performance of cloud application is often quite
disappointing due to unmanaged consolidation. Therefore, efforts
are required to reduce co-tenants interference and provide
predictable application performance in multi-tenant cloud
environments. In this paper, we examined the complex interplay
among cloud tenants as they compete for CPU time, and shared
hardware resources. We propose Adaptive CPU Sharing (ACS)
approach that reduces co-tenants interference and provides
predictable application performance. Our approach is to monitor
the progress of submitted applications at runtime, tracks the
slowdown of individual application and applies adjustment until
convergence. Thus, when an application suffered more slowdown,
we allocate more CPU to reduce unfairness. In establishing system
support for fine-grained profiling, we report system level activities
at sub-second granularity. We predicted application performance
degradation by creating a mathematical relationship between high-
level application performance and low-level machine events (i.e.,
CPU steal time and L2 caches miss rate). We validate the added
value of our approach by comparing application performance
slowdowns (average) with various datasets. Based on our
experimental results, our approach helps mitigate co-tenant
interference and reduces unfairness by minimizing the overall
application slowdowns.

Index Terms – Multi-tenants Cloud Computing, Co-tenant
Interference, Performance Measurement, Performance
Variation, CPU Steal Time, Performance Degradation

I. INTRODUCTION

This paper is an extension of our previous work [1] with the main
contribution that involve the implementation of mitigation
techniques to reduce the impact of co-tenants’ interference and
improve application performance. Application performance
degradation due to resource sharing and contention among co-
tenants is well study in literature. However, most of the existing
work focuses on a particular aspect of the resource sharing in
isolation. There lacks a comprehensive understanding of the
complex interplay between individual hardware components under
resource contention. In this research work, we focused on
predicting application performance by establishing a mathematical
relationship between the high-level application performance and
the low-level CPU multiplexing from resource sharing perspective.
We measure application performance in term its execution runtime
“mean” (average) in an interference free environment as a baseline.
We define application performance degradation as unexpected
slowdowns incurred by an application due to contention and co-
tenant interference. Thus, we define multi-tenant cloud
environments to be fair if all running applications experience equal
slowdowns. This assumption is based on application performance
in term of its execution runtime rather than on resource related
metrics. Prior work [2, 3,4] supports this assumption. Therefore, we
can say unfairness occurs in multi-tenant cloud environments when
application of equal weight experience disparity slowdowns. The

over-arching goal of this work is to reduce overall application
performance degradation by considering CPU allocation and
contentions on shared resources. We propose a novel approach that
helps mitigate co-tenant interference, reduce unfairness in the
allocation of shared resource and enhance application performance
in a multi-tenant cloud environment. To this end, our overall
approach is to:
• Quantify the impacts of CPU time multiplexing and hardware

resource sharing on application performance and applies
adaptive resource control (i.e., CPU allocation) to achieve
equitable services among cloud users.

• Measure application performance in term of unfairness by
using the relative execution runtime slowdown compared to the
runtime in an interference-free environment.

• Design an Adaptive CPU sharing approach that helps mitigate
co-tenant interference, and reduce unfairness in the allocation
of shared resource in multi-tenant cloud environments. The
goal is to minimize the “average” slowdown of co-located
applications runtime.

The basic approach is to monitor the progress of submitted
applications at runtime, tracks the slowdown of individual
application and applies adjustments until convergence.

First, we define multi-tenant cloud environments to be fair if all
running applications experienced equal slowdowns. We denote by;

• (i), application
• (t_alone_i), as runtime when (i) runs alone
• (t_share_i), as runtime when (i) runs concurrently with

other application in multi-tenant environments
Thus, the slowdown of an application (i) is calculated as:

���������	
 � ��������
���������
 ���

We measure unfairness to application (i) among other application
(n) as the ratio between its peak (maximum) and lowest (minimum)
slowdown.

����	����� �

�� �!"#$%#$&�'
(!"#$%#$&�)(*
!"#$%#$&�&
��+,�!"#$%#$&�'(!"#$%#$&�)(*
!"#$%#$&�&�

�-�
The ultimate goal of our approach is to minimize the unfairness and
ensure that applications with different runtime experience
consistent slowdowns.

II. BACKGROUND AND MOTIVATION

In a multi-tenant cloud environment; there are significant
contributing factors that impact overall application performance and
throughput. Thus, we discuss below three prevailing challenges
facing the Multi-tenants’ clouds environment that continues to
impact negatively users experience and adoption of the cloud.

2016 IEEE 9th International Conference on Cloud Computing

2159-6190/16 $31.00 © 2016 IEEE

DOI 10.1109/CLOUD.2016.54

367

Attempt to understand these challenges and the need to address
them motivates the basis for our research work.��

A. Multi-tenant CPU Sharing
As a standard practice by cloud providers, a multi-tenant public
cloud platform such as Amazon Elastic Compute Cloud EC2 [5]
instance (virtual machine [VM]) share resources with other
instances on a single host in a virtualized environment.
Predominantly shared resource is the CPU cycles; however,
unmanaged sharing of CPU usage has significant consequences on
tenants’ performance and throughput. The sharing of CPU time
causes undue CPU steal time [6].

B. Contention for Shared Hardware Resource
Mekkat et al. [7] mentioned that one of the key challenges in
designing heterogeneous multicore systems is the sharing of on-
chip resources such as the last-level cache (LLC), which may have
significant impact on system and application performance.
Zhuravlev et al. [8] stated that the challenges of shared resource
contention existed because chip multicore processor cores are not
independent processors but rather share common resources among
cores such as the last level cache (LLC).

C. Lack of Fairness in Resource Management
Cloud application performance largely depends on proper utilization
of multiple reconfigurable shared resources such as the CPU,
memory, and disk I/O bandwidth. It is imperative to ensure that any
reconfiguration, allocation, and utilization of shared resources are
fair to all tenants in such a way that mitigate undue interference and
reduce performance degradation.

III. RELATED WORK
In this section, we review existing research work and discuss how
this research work complements existing work. First, in our prior
research work [1], we profiled and analyzed the impact of co-tenants
interference and established the root causes of application
performance variation in multi-tenant cloud environment. Xu et al.
[4] in their research propose a fair-progress process scheduling
(FPS) policy to improve system fairness. Their strategy is to force
equally weighted applications to have the same amount of slowdown
when they run concurrently by allocating more CPU time. In this
paper, we leverage similar approach by allocating more CPU based
on the high-level application performance and low-level contention
for shared resources. Menon et al. [9] in their work presented
Xenoprof, a system-wide statistical profiling toolkit implemented
for the Xen virtual machine environment with focused on
performance overheads for network I/O device. Blagodurov et al.
[10] investigated thread scheduling can help mitigate contention for
shared resource. Nathuji et al. [11] presented Q-Clouds, a QoS-
aware control framework that tunes resource allocations to mitigate
performance interference effects by using online feedback to build a
multi-input multi-output (MIMO) model that captures performance
interference interactions and uses it to perform closed loop resource
management. Also, the concept of proportional share–based
algorithm was proposed [12, 13, 14], which allocates CPU
resources based on resource specifications in other to help mitigate
interference among co-tenants and reduce performance degradation.

IV. DESIGN

In this section, we provide the design of our fine-grained
measurement framework, experimental platform setup, experiment
test cases, and implementation approach. Our implementation
approach includes configuration of testbed platform, software

installation, and codes design. The support system design includes
in-hypervisor reporting of CPU allocation and cache misses. First,
a multi-tenant private cloud platform is configured with a quad-
core processor (Xen environment) with two guests VM; (VM-
INTR) and VM-SPEC). (VM-SPEC), and (VM-INTR) are assigned
CPU weight with the ratio of 1:1. The guest OS and Xen are both
instrumented to report CPU steal time and hardware performance
statistics of a VM in real time. We design two system level fine-
grained profilers; CPU steal time profiler, and Hardware
performance counters profiler to record and measure the interplay
as tenants compete for CPU time and shared hardware resources.
Measurements from the two profiler help derive meaningful models
to predict the performance of various applications in the cloud.
Finally, a system level Adaptive CPU Sharing (ACS) algorithm
was design and implemented. ACS monitors the runtime statistics
of co-running applications and predicts the overall slowdown of
each application. If unfairness exists, ACS throttles the application
that has lower slowdown than the other by setting a lower CPU cap.
Table 1 and Figure 1 show our experimental system setup and
reference architecture.

TABLE 1. OVERVIEW OF SYSTEM SETUP
Component
name

Xen 4.0.2
(domain- 0)

VM-SPEC
(tenant #1)

VM-INTR
(tenant #2)

System
information

CentOS 5.3
Linux, Intel(R)
Core (TM) Quad
CPU Q9550
2.83GHZ

CentOS 5.3
Linux,
Intel(R) Core
(TM) Quad
CPU Q9550
2.83GHZ

CentOS 5.3
Linux, Intel(R)
Core (TM)
Quad CPU
Q9550
2.83GHZ

Memory 3.48GB 2.8GB 2.8GB

Hard disk size 103GB 50GB 50GB

CPU Core 4 4 vCPU 4 vCPU

�������	�
�����

����������������������

���

��

����
�������

� !��"�

"������#$

��

��������

� !���%

"������#�

��

�������

�&���'������(��)	�)���!�*+,-!%�������%������

�-
%�+

.%�+
.%�+

%�+ %�+ %�+

��(�)�	��

%�������

������/��	��
���'�	���

������/��	��
���'�	���

Figure 1. Multi-tenant Clouds Reference System Architecture

A. Experiment Test Cases
We conducted our research with three (3) experimental test cases:
• Test Case 1(Dataset 1): experiment in an interference free

environment with standard resource management.
• Test Case 2 (Dataset 2): experiment in a co-located

interference prone environment with standard resource
management.

• Test Case 3 (Dataset 3): experiment in a co-located
interference prone environment with controlled resource
management.

Our experiments benchmark SPEC CPU2006 simulate certain
aspects of real-world application workloads and comprises of both
CPU and memory bound benchmarks. Table 2 shows the Datasets
for Test Case 1, Test Case 2, and Test Case 3 respectively.

TABLE 2: EXPERIMENTAL TEST CASES 1-3

368

TEST CASE 1 TEST CASE 2 TEST CASE 3

VM-SPEC VM-
INTR
(w/milc)

VM-SPEC VM-
INTR
(w/milc)

VM-SPEC VM-
INTR
(w/milc)

Mcf No Load Mcf Milc Mcf Milc

Milc No Load Milc Milc Milc Milc

Gobmk No Load Gobmk Milc Gobmk Milc

Bzip No Load Bzip Milc Bzip Milc

Soplex No Load Soplex Milc Soplex Milc

Libquantum No Load Libquantum Milc Libquantum Milc

B. Fine-grained CPU Steal Time Profiler
To measure the CPU steal time, the profiler makes periodic system
call via the Xen hypervisor to get the system runstate with
HYPERVISOR_vcpu_op (VCPUOP_get_runstate_info) operation.
VCPUOP_get_runstate_info triggers an hypercall [15] which
allows the guest OS to perform privileged operation through Xen
hypervisor, similar to the use of system calls in a conventional
operating system. The VCPUOP_get_runstate_info was
implemented on each guest OS to report the vCPU steal time for
given period. The profiler takes two arguments; profiling duration
(length of the sampling period) and the vCPU identification. We
define vCPU runnable time as the time the vCPU is willing to run
but do not have the chance to run because other VMs are using its
time. Also, we define vCPU offline time as the capped time for the
vCPU i.e. there is a static cap on the CPU allocation. We denote
by;

• (o), vCPU offline time
• (r), vCPU runnable time
• (./), CPU steal time

Thus, CPU steal time (./) for a given vCPU (y) is calculated as;

./
�0�
 �
1
2
 3
4
2

�5�

Algorithm 1 below supports the CPU steal profiler and helps in the
measurement of the CPU steal time. The profiler achieves fine
grained profiling at the milliseconds level.

�������	
����������	
������������������������������
�����������

�������������	
����������������
�����������������������	�������	����
���� ���������������������!� "�	����!� "�	���
�������������������!� "����������!� "�	�#�$%&"'%()�*"+)$"����,��
�����������-�����"������"������
.��!/�	������-�����".��!/�	"�����
� ������������-�����"� �����"�������
��������������-�����"�������"�����
������	�	��������
!��!/�! ������	��������� �
������
�������
��������������!������������& ���
������������&�''��	��������	���
������	����� ������-��������0�&,1)1%"���������.��!/�	��
��������
�������
��������������!����������& ���
������������)�12�%��	�������!�����
������	����� ������-��������0�&,1)1%"� �������� �������
�������
�������3�����������4�� �� �����������4�� �.��!/�	������4�� �5�3
������
�� �����
�.��!/�	����
�����
�

C. Fine-grained Hardware Performance Counters Profiler
Hardware performance counters statistics are reliable metrics for
program characterization, system testing, and performance
evaluation [16]. On modern CPU architectures, multiple cores share
last-level cache (LLC), where LLC is the last cache available;
beyond this cache, the access must go to memory. Therefore, cache
activities are important metric to understand the memory usage of a
VM in multi-tenant environment. To profile contention for shared
hardware resource, we patched the Xen hypervisor with Perfctr-Xen
[17] to allow measurement of low-level hardware performance
counters Perfctr [18]. Our experimental system set-up is a Type-1
virtual machines [20] environment, whereby, the Xen hypervisor
serves as the lowest layer with direct access to the supporting
hardware infrastructure and the guest VMs run on top of the Xen
hypervisor. The profiler captures L2 cache activities and help to
measure the interplay between application performance and
processor events. It’s important to note that the Xen Quad-core
processors used in this research work has two Level 2 (L2) caches,
each shared by two processor cores [21, 22]. Also, the Xen Quad
core support two hardware counters, and can report different events.
The profiler was configured to count and report two predefined
hardware performance statistics; L2_rqsts.self.demand.mesi [23],
and L2_rqsts.self.demand.i_state [23]. Each core has a L2 cache of
same size; the L2 cache miss rate is independent of the thread-to-
core assignment [24]. Exiting research supports the use of metrics
from last level cache miss rate as an effective data for quantifying
shared hardware resource contention [9]. To establish the L2 cache
miss_rate, we counted L2_rqsts.self.demand.i_state (all completed
L2 cache demand requests from the core that miss the L2 cache) and
L2_rqsts.self.demand.mesi (all completed L2 cache demand
requests from the core) per thousand instructions. We denote by;
• (W), L2 cache miss ratio (cache miss_rate)
• (6), L2 cache demand request missed
• (67), L2 cache demand request
Thus, we calculate the L2 cache miss_ratio as;

8 � 9
9: �;�

Algorithm for the fine-grained hardware performance counter helps
in the measurement of L2 cache miss_rate. Algorithm is suppress
for this paper.

D. Design of Adaptive CPU sharing model
As a background, a CPU scheduler determines which VM should
run on the CPU at any given time. In general, majority of CPU
schedulers are broadly categorized as either a proportional share
(PS) or fair-share (FS) [24]. FS schedulers provide proportional-
share among multi-tenant clients by adjusting the priorities of clients
in the most suitable way. Experimental measurements had showed
that most FS schedulers provide a reasonable, proportional fairness
over relatively large time intervals [25]. On the other hand, PS
techniques focus on allocating CPU in proportion to the VM shares
(weights). The difference between FS and PS can be discuss in term
of the time granularity at which both schedulers operate. PS aim to
provide an instantaneous form of CPU sharing among the active VM
clients according to their weights. In contrast, FS provides a time-
averaged form of proportional sharing based on the actual VM use
of CPU measured over long time periods [24]. With the traditional
Xen credit scheduler [26], each tenant (VM) is assigned a weight
and a cap. If the CPU cap is Zero (0), then the guest can receive any
extra CPU time. A non-zero cap CPU allocation normally expressed
as a percentage limits the amount of CPU a tenant can receive.
Therefore, as a standard, the Xen credit scheduler uses 30 ms time
slices for CPU allocation and a guest (vCPU) receives 30 ms before

369

being preempted to run another guest [27]. After every 30 ms, the
priorities (credits) of all runnable guests are recalculated. However,
with the dynamics state of the cloud environments, the priorities
credit rule of Xen scheduler may lead to fluctuation in the allocation
of CPU and thereby making CPU allocation inequitable to all users.
CPU time-sharing among multiple VMs has been showed to provide
much more predictable performance than I/O sharing [28]. Our
approach considered both the PS and FS schedulers techniques in its
design. Our design approach extends the Xen credit scheduler [29]
to support more efficient, fair, and dynamic scaling of CPU sharing
among co-tenants. Specifically, the ACS algorithm checks the status
of individual applications based on runtime characteristics of the
workloads to enforce fairness in the allocation of CPU. The ACS
algorithm encrust on the (Xen)’s hypervisor by building on the xm
shed-credit -c [30] to control the CPU resource allocation to each
guest so that each guest receives relatively same level of slowdown.
Thus, in designing the ACS algorithm, we modified the Xen
management utility through the Linux kernel to allow for adaptive
changing of the CPU allocation so that each VM receive relatively
same level of slowdown based on the high-level application
characteristics rather than arbitrary capping the CPU value for each
tenants. Therefore, our algorithms adaptively change the CPU cap
values of each VM to achieve fair slowdowns to all tenants. We
design the ACS to have a controlled resource sharing rules i.e. the
controlled factor��<��of the application behavior, and the application
performance effect
�=&��� Therefore�� �<�
���
�=&�� together
determine the magnitude of the resource sharing adjustment. The
change of� �<��has impact on the application overall performance.
One of the most commonly used statistical procedures to model
relationships between variables is regression analysis [32].�
Regression analysis relates a dependent variable� �<�� with
explanatory variables��=)(�=>(=?(=@(* A =&���used as predictors. A
simple form of regression analysis is linear regression; in which we
assume the dependent variable is a linear function of explanatory
variables. Thus, we define��<��and��<B��as;

< ��C'�C)��
=) 3 C>��
=> 3 C?�3D
3
C&�
=&���������������E��<B���C'�C)��
=) 3 C>��
=> 3 C?�3D
3
C&�
=&��������������F��
The goal of linear regression analysis is to find coefficients��C'(C)��
C>(* (C&�(
to minimize error� 	< G <B	��Where� �C�� is a discount
factor that give more weight on the recent observation of��<��
���
�<B�(� with due consideration on the application workloads past
behavior. We have assumed the application workloads past
behaviors are predetermined by the application benchmark
workloads runtime in an interference free environment. Also, if a
repeated application behavior does not deviate from the establish
application workloads runtime, the application performance� �=&��
would converge. If the application behavior deviates from reference
performance interference free baseline value, the value��C��should
quickly recalibrates. To reduce unfairness, it’s imperative that we
have a capability that allows for dynamic adjustment to the
scheduler, and we need to understand the application characteristics.
ACS uses the controller to manage the CPU cap for each VM so that
unfairness is minimized. Assume that each VM has slowdown_i
and the average slowdown is slowdown_avg. Thus, the cap of VM
�H��at time �I��is calculated as:

JCK�I��H � JCK�I G ���H G = L �MN4OP4OQ�CRS G MN4OP4OQ�H)�T�
Where (=� is the integral gain parameter that controls the rate of
cap adjustment

= � UMN4OP4OQ�H

 G MN4OP4OQ�CRSUMN4OP4OQ�CRS

�V�

As such, if a VM receive lower slowdown than the average, it gains
advantage over others and will have its cap value decreased. In
contrast, a VM having higher slowdown than the average will see
its cap increased. Figure 1 depicts the ACS process flow. We
describe a typical ACS process flow process as follows:
a. Cloud users submit workloads;
b. Shared resources are made available to process submitted

workloads;
c. Fine-grained profilers measure tenant interplay and

competition for shared resource;
d. CPU allocation to tenants is determine by the workload

behavior and tenant state;
� Workloads performance is manage with reasonable level of

prediction. �

�
Figure 2: Schematic Overview of the Steps involved towards Application-

centric Fairness in Multi-Tenant Clouds

Algorithm 2 below supports the Adaptive CPU sharing and helps
to enforce fair CPU sharing among co-tenants.
�������	
� ��������	
�����������!�������	������
������

��������+��	
��+�6�����
�����!��	����$�
�����������������������	�������	���
�+���������� ��������
�.��!/�	��.�
��� ��	����
��� �	�7�����
������	��+��	����
����	��"�! �������+������
����
�����	���+������������"�������+�2&10
��+�,�%��
�����	���+�7����������!���������!��	�!��	�����+�2&10
��+�,�%��
�����	��3�������������!���������7����	�7�83�
����������9�����3*��3�3&�3��	��
��������:9�����
����;*��<��	= ����������!�����.���/��;&�<��>�����
�?@���������+������!��	���7������@?�
����������+�7�������+�2&10����!��	�!��	�����:�>��!��	�!��	����	�A��7�BCD����+�2&10�
����������+�7�������+�,�%�����!��	�!��	����:�>��!��	�!��	����	�B��7�BCD����+�,�%��
����	����������!���������!��	�!��	�������"����!�����"��+�2&10
����"����!�����"��+�,�%��
����;�3:���"����3����3�+�2&10E<�FF�;�3:�����3����.<���	���
��#$�����������>� ��������!�������� �������+@?�
��������%����������%&'�(�����:�>��!��	�!��	����	�B��!�$��
�������	��3�������"�+�,�%��3:���"����!�����"�+�,�%��
������>���A���
�����
����;�3:���"����3����3�+�,�%�E<�FF�;�3:�����3����.<���	���
����#$����������>� ��������!�������� �������+@?�
��������%����������%&'��)*+��:�>��!��	�!��	����	�A��!�$��
�������	��3�������"�+�2&10�3:���"����!�����"�+�2&10�
������>����A���
���
�����	��)	���������������!�������!�����	�.9�����!�������+���
3���"���	���3:���"���	��"������!������:�>��!��	�!��	����
�����

370

V. EXPERIMENTAL RESULTS
In this section, we are interested in analyzing the relationship
between the low-level machine activities and high-level application
performance. We conducted series of experiments, and as
mentioned in section IV, we have three test cases. We started our
experiments with the standard Xen resource allocation to establish
application performance baseline based on the workloads execution
runtime (average). Thus, we analyze results from our experiments
datasets. CPU Steal Time and Application Performance
Table 5, 6, and 7 shows the benchmark workloads runtime and fine-
grained CPU Steal Time (Milliseconds) metrics from experimental
Test Cases 1-3.

TABLE 5: TEST CASE 1 - BENCHMARK WORKLOADS RUNTIME
(AVERAGE) AND CPU STEAL METRICS

Benchmarks workload
slowdown (average)
runtime (VM-
SPEC)

Ave. Steal
time (VM-
SPEC)

Ave. Steal
time (VM-
INTR)

Mcf 8.61 2 0

Milc 11.8 2 0

Gobmk 10.46666667 2 0

Bzip2 10.23333333 2 0

Soplex 7.766666667 2 0

Libquantum 16.08333333 2 0

TABLE 6: TEST CASE 2 - BENCHMARK WORKLOADS RUNTIME
SLOWDOWN (AVERAGE) AND CPU STEAL METRICS

Benchmarks workload
slowdown
(average)
runtime
(VM-SPEC)

Ave. Steal
time
(VM-
SPEC)

workload
slowdown
(average)
runtime
(w/milc)
(VM-INTR)

Ave.Steal
time
(VM-
INTR)

Mcf 1.116918312 34 2.159604517 4980

Milc 1.213276836 40 2.357344636 5011

Gobmk 1.025477706 40 2.000000000 5010

Bzip2 1.01791531 58 1.991525424 5040

Soplex 1.62446352 40 1.411016949 3920

Libquantum 1.187564767 34 2.419491525 4920

TABLE 7: TEST CASE 3 - BENCHMARK WORKLOADS RUNTIME
SLOWDOWN (AVERAGE) AND CPU STEAL METRICS

Benchmarks workload
slowdown
(average)
runtime
(VM-SPEC)

Ave.Steal
time (VM-
SPEC)

workload
slowdown
(average)
runtime
(w/milc)
(VM-INTR)

Ave.Steal
time (VM-
INTR)

Mcf 1.873790166 64 1.629943503 180

Milc 1.508474576 253 1.45480226 339

Gobmk 1.162420382 177 1.059322034 243

Bzip2 1.858306195 18 1.706214689 77

Soplex 1.46137339 272 1.209039548 283

Libquantum 2.18016529 192 1.378531074 264

To characterize the relationship between the benchmark workload
slowdown (t) and the CPU steal time(x), we calculate the linear
correlation coefficient (r) between the benchmark workload
slowdown (t) and CPU steal time (x). We denote by;

• �W�; CPU steal time
• (I); benchmark workloads slowdown

1 �
&X /YZ�X/
�

�XY�
[
&�
XY\�Z�
XY�\
]
&�
X/\�Z�
X/�\

(9)

Using (9), and metrics from Table 6, Test Case 2, we, establish that
the benchmark slowdown (I) is proportional to the CPU steal time
(x) with r = 0.8361. Linear correlation coefficient (r) is closer to 1,
this indicate a strong positive relationship between (I) and (W). This
finding validates the relationship between CPU steal and its impact
on benchmark workloads runtime in term of application
performance.
Figure 3 shows the fine-grained CPU steal time for Test Case 1, Test
Case 2, and Test Case 3.

�
Figure 3: SPEC CPU2006 benchmark workloads showing CPU Steal

Time in different consolidation scenarios.

In figure 3, Test Case 1 depicts zero CPU steal time due to lack of
co-tenant interference. In Test Case 2, Tenant #2 experienced unfair
high CPU steal due to co-tenant interference. In Test Case 3, Tenant
#1 and #2 experience shared CPU steal time. This finding
underscore the underlying indicator for unfairness in application
slowdowns; thereby, leading to unpredictable application
performance in multi-tenant cloud environment.

A. Memory Access and Benchmark Workload Performance
To further support predictable application performance in multi-
tenant cloud, we analyze the relationship between high-level
application performance and low-level memory access. Studies
have shown that effective memory access among co-tenants is very
important in multi-tenant clouds. Therefore; the memory miss rate
become more significant.
Table 8, and Figure 4 shows the consolidated L2 cache miss_rate
metrics from L2 cache demand request miss, and L2 cache demand
request events captured during our experiments for each dataset
captured as we submit the benchmark workloads for processing.

TABLE 8: L2 CACHE MISS RATE METRICS FROM TEST CASES 1-3
Benchmarks Test Case 1 Test Case 2 Test Case 3

Mcf 0.05747975 0.1169545 0.079881

Milc 0.17263025 0.19241325 0.14037925

Gobmk 0.028304 0.0831910 0.0973515

Bzip 0.025819 0.03417075 0.04921675

Soplex 0.08920625 0.10622325 0.1461455

Libquantum 0.05807225 0.0733105 0.075655

�

0
1000
2000
3000
4000
5000
6000

V
M

-S
PE

C

V
M

-I
N

TR
(w

/M
IL

C
)

V
M

-S
PE

C

V
M

-I
N

TR
(w

/M
IL

C
)

V
M

-S
PE

C

V
M

-I
N

TR
(w

/M
IL

C
)

Test Case 1 Test Case 2 Test Case 3

C
PU

 st
ea

l t
im

e(
m

ill
ise

co
nd

s)
mcf milc gobmk bzip Soplex libquantum

371

�
Figure 4: L2 Cache Miss_Rate with Combine Test cases

Further, in Figure 5, 6, and 7, we show the outcome of low level
memory access events (L2 cache miss rate) for the quad-core
processor with various experiments test cases.

�
Figure 5: Test Case 1 - Quad-Core Processor Activities

Figure 5, shows moderate spike in L2 cache miss rate due to lack of
interference and co-tenant competition.

�
Figure 6: Test Case 2 - Quad-Core Processor Activities

Figure 6, shows significant spike in the L2 cache miss rate because
of high level of contention for memory access between the two
tenants.

�
Figure 7: Test Case 3 - Quad-Core Processor Activities

Figure 7, shows significant spike in the L2 cache miss rate because
of high level of contention for memory access between the two
tenants. These findings validate the relationship between effective
memory access and application performance. Therefore, we can
conclude that memory as a shared resource contributes to
application performance variation in multi-tenant cloud
environment. Thus, memory tuning is a viable approach that can be
use to promote application-centric fairness in multi-tenant clouds.

VI. EVALUATION OF EXPERIMENTAL RESULTS

In this section, we analyze and evaluate our experimental results and
findings. Next, to prove this research hypothesis, we are interested
in further analysis of results and metrics from our experiments.
Therefore, to further test the hypothesis of our approach, we
reviewed several performance prediction techniques; Weighted
Means [31, Linear Models (LM) [32], and Support Vector Machines
[33]. Using the weighted means technique, we focus our
measurement on the application performance “mean” average.
Therefore, we define the application execution runtime (average) as
the primary measure of the application performance of individual
application. The average “mean” method help to measure
application performance scores relatively across Test Cases 1-3.
Therefore, to quantitatively express the application performance
runtime slowdown “mean” average, we analyze results from our
experiments Test Cases.
We denote by;
• (P), overall application performance
• �I�, the application workloads runtime
• (n), instances of each submitted application workloads

If we have the application workloads runtime containing the value��
I)(I>(I?(I@(A A A (I&(
�the arithmetic mean�^�is define as;��
�

^ � _X`abc YbA
&
d����������������������������(11)

Thus, we calculate the overall application�performance� &̂�(�“mean”�
(average) as;�

�

 &̂ � _X`abc �YbeY\eYfeYgeA*Yc�
&
d���������������������

To evaluate the performance of our algorithm, we analyze results
from the various Test Cases submitted. We measure benchmark
workload slowdown as a disunion between the application runtime
with interference (t_share_i) and application runtime without
interference (t_alone_i).

First, we use experimental results from Test Case 1 (Table 9 and
Figure 8) and Test Case 2 (Table 10 and Figure 9) respectively. For
instance, In Table 9, the milc benchmark workload (average)
normalized runtime baseline in an interference free environment is
11.8minutes (VM-SPEC). Figure 8 shows milc benchmark
workload baseline runtime.

TABLE 9: TEST CASE 1 - BENCHMARK APPLICATION WORKLOADS
RUNTIME SLOWDOWN (AVERAGE) METRICS

Benchmarks Ave. workload runtime (VM-SPEC) interference free

Mcf 8.61

Milc 11.8

Gobmk 10.46666667

Bzip2 10.23333333

Soplex 7.766666667

Libquantum 16.08333333

0

0.05

0.1

0.15

0.2

0.25

mcf milc gobmk bzip Soplex libquantum

L2
 c

ac
he

 m
iss

 r
at

e

Test Case 1 Test Case 2 Test Case 3

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

mcf milc gobmk bzip Soplex libquantum

L2
 c

ac
he

 m
iss

 r
at

e

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

mcf milc gobmk bzip Soplex libquantum

L2
 c

ac
he

 m
iss

 r
at

e

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

cp
u

0
cp

u
1

cp
u

2
cp

u
3

mcf milc gobmk bzip Soplex libquantum

L2
 c

ac
he

 m
iss

 r
at

e

372

�
Figure 8: Test Case 1 - Benchmark Workloads Runtime (Average) in an

Interference Free Environment with Standard Resource Management

In Table 10, the milc benchmark workload runtime slowdown
(average) in a co-located environment with standard resource
sharing is calculated as 1.21minutes (VM-SPEC) and 2.35 minutes
(VM-INTR).

TABLE 10: TEST CASE 2 - BENCHMARK APPLICATION WORKLOADS
RUNTIME SLOWDOWN (AVERAGE) WITH STANDARD RESOURCE

Benchmarks workload slowdown
(average) runtime (VM-
SPEC)

workload slowdown
(average) runtime
(w/milc) (VM-INTR)

Mcf 1.116918312 2.159604517

Milc 1.213276836 2.357344636

Gobmk 1.025477706 2.000000000

Bzip2 1.01791531 1.991525424

Soplex 1.62446352 1.411016949

Libquantum 1.187564767 2.419491525

�
Figure 9: Test Case 2 - Benchmark Workloads Runtime Slowdown

(Average) in a Co-Located Interference Prone Environment with Standard
Resource Management

In figure 9, benchmark workloads submitted in VM-INTR (Tenant
#2) shows significant slowdowns compare to workloads submitted
in VM-SPEC (Tenant #1) even with workloads of similar
characteristics e.g. milc.
Further, we expand equation (12) to demonstrate the value add of
ACS and its impact on the overall application benchmark workload
performance. We measure the benchmark workloads runtime
slowdown (average) when the benchmark workloads execute in
standard resource sharing mode, and when the benchmark
workloads execute in ACS mode. Thus, we denote by;
• � ĥ��� application workloads runtime slowdown (average)

with standard resource sharing as;��
�� î���
_X`ab

c Y�jbkj\kjfkjgkjlkjm**jc�
& d������������������(13)�

• �nop��� application workloads runtime slowdown (average)
with ACS sharing as;�

�^oq� � _X`ab
c Y�rbkr\krfkrgkrlkrm**rc�

& d����������������� (14)�

Therefore, we use metrics from Table 10 (Test Case 2) and Table 11
(Test Case 3) to support our experimental evaluation.

TABLE 11: TEST CASE 3 - BENCHMARK APPLICATION WORKLOADS
RUNTIME SLOWDOWN (AVERAGE) WITH ADAPTIVE CPU SHARING�

Benchmarks workload slowdown
(average) runtime
(VM-SPEC)

workload slowdown
(average) runtime
(w/milc) (VM-INTR)

Mcf 1.873790166 1.629943503

Milc 1.508474576 1.45480226

Gobmk 1.162420382 1.059322034

Bzip2 1.858306195 1.706214689

Soplex 1.46137339 1.209039548

Libquantum 2.18016529 1.378531074

�
Figure 10: Test Case 3 - Benchmark Workloads Runtime Slowdown

(Average) a Co-Located Interference Prone Environment with Controlled
Resource Management

In Table 11 and figure 10, the benchmark workloads runtime
slowdown shows reduction in unfairness slowdown between the
background and foreground application workloads runtime. On the
hand, in Table 10 and figure 9 the application workloads runtime
shows unequitable slowdown between the background and
foreground application workloads runtime.
Figure 9 and figure 10 shows the contrast between benchmark
workloads runtime slowdown (average) in standard resource sharing
mode and Adaptive CPU sharing mode. Figure 10 depicts that the
ACS approach reduce unfairness and among co-tenants.
Additionally, we are interested in ensuring that the individual
application runtime slowdowns with our approach is compared to, if
not better than the individual application runtime slowdown with the
standard Xen resource scheduler.
We are more interested in finding out the extent to which the overall
application performance is affected in term of performance
degradation based on the application runtime average.
Subsequently, we can quantitatively compare the application
performance in term of the workloads slowdown when running with
standard Xen CPU sharing and Adaptive CPU sharing using metrics
from our experiments.
To this end, two separate milc experimental metrics from Test Case
2 and Test Case 3 were evaluated to establish the impact of the
Adaptive CPU sharing on application performance in multi-tenant
cloud environment.
• Milc benchmark workloads runtime slowdown (average) with

standard resource sharing (Test Case 2).
• MILC benchmark workloads runtime slowdown (average) with

adaptive CPU sharing model (Test Case 3).

0

10

20
A

ve
. r

un
tim

e(
m

in
ut

es
)

Benchmark Workload (Average) runtime (VM-SPEC) - Interference Free

0

0.5

1

1.5

2

2.5

A
ve

. r
un

tim
e

slo
w

do
w

(m
in

ut
es

)

Benchmark Workload Slowdown (Average) runtime (VM-SPEC)

 Benchmark Workload Slowdown (Average) runtime (w/milc) (VM-INTR)

0

0.5

1

1.5

2

2.5

A
ve

. r
un

tim
e

slo
w

do
w

n(
m

in
ut

es
)

Benchmark Workloard Slowdown (Averege) runtime (VM-SPEC)

Benchmark Workloard Slowdown (Averege) runtime w/milc (VM-INTR)

373

We compare the slowdown runtime (average) of Milc benchmark
workloads when running in standard resource sharing
� ĥ��� and
Milc benchmark slowdown runtime (average) when running in
Adaptive CPU sharing
�^oq����
Table 12 and 13, shows the consolidated runtime slowdown
(average) for milc benchmark workloads with standard resource
sharing and milc benchmark workloads runtime slowdown
(average) with Adaptive CPU sharing respectively.

TABLE 12: TEST CASE 2 - MILC BENCHMARK WORKLOADS RUNTIME
SLOWDOWN (AVERAGE) WITH STANDARD RESOURCE SHARING

Runtime instance (n) workload slowdown (average) runtime (w/milc)
(VM-INTR)

T(K1) 2.159604517

T(K2) 2.357344636

T(K3) 2.000000000

T(K4) 1.991525424

T(K5) 1.411016949

T(K6) 2.419491525

TABLE 13: TEST CASE 3 - MILC BENCHMARK WORKLOADS RUNTIME
SLOWDOWN (AVERAGE) WITH ADAPTIVE CPU SHARING

Runtime instance(n) workload slowdown (average) runtime (w/milc)
(VM-INTR)

T(Z1) 1.629943503

T(Z2) 1.45480226

T(Z3) 1.059322034

T(Z4) 1.706214689

T(Z4) 1.209039548

T(Z6) 1.378531074

Using equation 13, 14, and metrics from Table 12 and Table 13, we
compare the overall application runtime slowdown (average) (&̂),
between milc benchmark workloads runtime slowdown
(average)
� ĥ� – (standard resource sharing), and milc benchmark
workloads runtime slowdown (average) �^oq� – (Adaptive CPU
sharing);
Thus, we calculate;
• �ns� �
 milc benchmark workloads runtime slowdown

(average) with standard resource sharing = 2.05649(minutes)
• �not� �
 milc benchmark workloads runtime slowdown

(average) with ACS = 1.40630(minutes)

Figure 11: Milc Benchmark Workloads Runtime Slowdown (Average)
with Standard Resource Sharing, and Adaptive CPU Sharing

Figure 11, shows the overall application performance difference
(&̂� between milc benchmark workloads runtime slowdown
(average)�� ĥ�(�and milc benchmark workloads runtime slowdown
(average)�^oq����
Based on the milc benchmark workloads average runtime, our
approach improves the overall milc benchmark workloads runtime
(average) slowdown by 37.54% compared to milc benchmark
workloads runtime (average) slowdown with Xen standard resource
controller.

VII. CONCLUSION AND FUTURE WORK

This paper addresses the issue of unpredictable application
performance in multi-tenant. Our approach in addressing
unpredictable application performance due to resource contention
among co-tenants is unique in that we have use fine-grained low-
level system metrics information to inform CPU allocation to each
tenant and reduce unfairness in application performance
degradation. Through series of experiments, we identified various
application performance characteristics, and we reduce the
imbalances in resource allocation and improve application
performance slowdown (average) without intrusive modification of
the hypervisor. We consider both the contention on CPU time as
well as contentions on the shared hardware resources (memory) to
accomplish efficient prediction of application performance.

Our approach adaptively allocates CPU to ensure equal
slowdown runtime for all co-running applications. Therefore,
dynamic allocation of CPU as a shared resource is a viable solution
to mitigate interference and reduce unfairness among cloud tenants
in multi-tenant cloud environments. Further, we demonstrate that
contention on shared resources, such as last-level CPU caches, has
salient impact on application performance. To monitor hardware-
level statistics in a fine-grained manner and ultimately realize online
performance prediction, we developed a set of tools to record
hardware events, and obtain important CPU allocation at the
hypervisor level, and throttle CPU allocation to reduce co-located
applications performance degradation. The over-arching goal of this
work is achieve by reducing the overall application performance
degradation in an equitable manner among cloud tenants.
Additionally, based on our experimental results, ACS incurs lower
unfairness that the default Xen scheduler.

Therefore, we propose ACS as a novel approach that helps
mitigate co-tenant interference, reduces unfairness by minimizing
the application slowdowns, and improves in-cloud application
overall performance. Experimental tests were performed on a
private multi-tenant cloud environment with micro-benchmark
workloads that simulate certain aspects of real-world application
workloads; however, results may vary with actual workloads carried
out on different environment.

�
REFERENCES

[1] Anthony Ayodele, Jia Rao, and Terrance E. Bolt,
“Performance Measurement and Interference Profiling in
Multi-tenant Clouds” in Proceeding of IEEE 8th International
Conference on Cloud Computing (CLOUD 2015), June 27 –
July 2, 2015, New York, USA.

[2] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via
source throttling: a configurable and high-performance
fairness substrate for multi-core memory systems. In
ASPLOS-19, 2010.

[3] K. Luo, J. Gummaraju, and M. Franklin. Balancing
throughput and fairness in SMT processors. In ISPASS, 2001.

2.0564

1.4063

0

0.5

1

1.5

2

2.5

Milc overall benchmark
workloads (average) runtime

slowdown with standard
resource management (VM-

INTR)

Milc overall benchmark
workloads (average) runtime

slowdown with Adaptive
CPU Sharing (VM-INTR)

A
ve

. R
un

tim
e

Sl
ow

do
w

n
(m

in
ut

es
)

374

[4] Di Xu, Chenggang Wu, Pen Chung Yew, Jianjun Li, and
Zhenjiang Wang, " Providing fairness on shared-memory
multiprocessors via process scheduling", in Proceeding of the
12th Joint International Conference on Measurement and
Modeling of Computer Systems, ACM SIGMETRICS, June
11-15, 2012, London, UK.

[5] Amazon. Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2

[6] Understanding CPU Steal Time – When should you be
worried?
http://blog.scoutapp.com/articles/2013/07/25/understanding-
cpu-steal-time-when-should-you-be-worried.

[7] Vineeth Mekkat, Anup Holey, Pen-Chung Yew, and Antonia
Zhai, " Managing Shared Last-Level Cache in a
Heterogeneous Multicore Processor", in Proceedings of the
22nd international conference on Parallel architectures and
compilation techniques, September 7-11, Edinburg, Scotland.

[8] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov,
Alexandra Federova, and Manuel Prieto, "Survey of
Scheduling Techniques for Addressing Shared Resources in
Multicore Processors", ACM Computing Surveys, Vol. V,
No. N, September 2011, Pages 1–31.

[9] Aravind Menon, Jose Renato Santos, Yoshio Turner, G.
(John) Janakiraman, and Willy Zwaenepoel1, "Diagnosing
Performance Overheads in the Xen Virtual Machine
Environment", in Proceedings of ACM/USENIX Conference
on Virtual Execution Environments, June 11-12, Chicago,
Illinois, USA

[10] Sergey Blagodurov, Sergey Zhuravlev, and Alexandra
Fedorova, “Contention-Aware Scheduling on Multicore
Systems”, ACM Transactions on Computer Systems, Vol.28,
No.4, Article 8, December 2010.

[11] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah, “Q-
clouds: managing performance interference effects for QoS-
aware clouds”, in Proceedings of the 5th European
Conference on Computer Systems (EuroSys 2010), April 13-
16, 2010, Paris, France.

[12] Jason Nieh, Chris Vaill, and Hua Zhong “Virtual-Time
Round-Robin: An O(I) Proportional Share Scheduler”,
USENIX Annual Technical Conference, pp. 245 – 259, 2001.

[13] Carl A. Waldspurger, and William E. Weihl, " Lottery
Scheduling: Flexible Proportional-Share Resource
Management", Lottery Scheduling: Flexible Proportional-
Share Resource Management, Proceedings of the First
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Monterey, California, USA,
November 14-17, 1994.

[14] Jon C.R. Bennett, And Hui Zhang, " WF2Q: Worst-case Fair
Weighted Fair Queueing”, INFOCOM 1996, pp. 120 – 128.

[15] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield, "Xen and the Art of Virtualization", in Proceeding
of the nineteenth ACM symposium on Operating systems
principles (SOSP'03), October 19–22, 2003, Bolton Landing,
New York, USA

[16] Corey Malone, Mohamed Zahran, and Ramesh Karri, "Are
Hardware Performance Counters a Cost Effective Way for
Integrity Checking of Programs", in Proceeding of the Sixth
ACM workshop on Scalable trusted computing, Oct 17-21,
Chicago, IL, U.S.A

[17] Ruslan Nikola, and Godmar Back, “Perfctr-Xen: A
Framework for Performance Counter Virtualization”, in
Proceedings of the 7th ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments
(VEE ’11). ACM, New York, NY, USA, 15-26.

[18] M. Petterson. Perfctr library.

 http//user.it.uu.se/~mikpe/linux/perfctr/, 2011
[19] S. T. King, G. W. Dunlap, and P. M Chen, “Operating System

Support for virtual machines”, in Proceeding of the 2003
USENIX Annual Technical Conference.

[20] L2 Cache, http://www.cpu-
world.com/Glossary/L/Level_2_cache.html

[21] Intel® 64 and IA-32 Architectures - Software Developers
Manual (Vol. 3 (3A & 3B): System Programming Guide, p.
535). (n.d.). Intel Corporation.

[22] Intel® 64 and IA-32 Architectures - Software Developers
Manual (Vol. 3 (3A & 3B): System Programming Guide, p.
1385). (n.d.). Intel Corporation.

[23] Jia Rao, Kun Wang, Xiaobo Zhou, and Cheng-Zhong Zu,
“Optimizing Virtual Machine Scheduling in NUMA
Multicore Systems”, in Proceedings of IEEE International
Symposium on High Performance Computer Architecture
(HPCA-19), February 23-27, 2013, Shenzhen, China.

[24] Ludmila Cherkasova, Diwaker Gupta, Amin Vahdat,
Comparison of the three CPU Schedulers in Xen, ACM
SIGMETRICS Performance Evaluation Review, v.35 n.2,
p.42-51, September 2007.

[25] Essick R. B., “An Event based Fair Share Scheduler”, In
Proceedings of the 1990 Winter USENIX Conference,
Washington, DC, pp. 147-161, Jan 1990.

[26] Credit Scheduler
http://wiki.xensource.com/xenwiki/CreditScheduler.

[27] Ryan Hnarakis, “In Perfect Xen, a Performance Study of the
Emerging Xen Scheduler", Dec 2013.

[28] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical report, EECS Department, University
of California, Berkeley, Feb 2009

[29] Xen Users’ Manual Xen v3.3
http://wiki.xenproject.org/mediawiki/images/4/47/Xen_3_us
er_manual.pdf

[30] J. Faraway. Practical Regression and Anova in R. July 2002.
[31] Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman,

Zhihua Wen, and Calton Pu, “an Analysis of Performance
Interference Effects in Virtual Environments” in Proceeding
of IEEE International Symposium on Performance Analysis
of Systems & Software, 2007. ISPASS 2007.

[32] Sajib Kundu, Raju Rangaswami, Kaushik Dutta, and Ming
Zhao, "Application Performance Modeling in virtualized
environment" in Proceeding of IEEE International
Symposium High Performance Computing Architecture,
2010.

[33] V.N. Vapnik, The Nature of Statistical Learning Theory. New
York, NY, USA, Springer, 1995.

375

